extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(S3×C32) = C32×Dic9 | φ: S3×C32/C33 → C2 ⊆ Aut C6 | 108 | | C6.1(S3xC3^2) | 324,90 |
C6.2(S3×C32) = C3×C32⋊C12 | φ: S3×C32/C33 → C2 ⊆ Aut C6 | 36 | 6 | C6.2(S3xC3^2) | 324,92 |
C6.3(S3×C32) = C3×C9⋊C12 | φ: S3×C32/C33 → C2 ⊆ Aut C6 | 36 | 6 | C6.3(S3xC3^2) | 324,94 |
C6.4(S3×C32) = D9×C3×C6 | φ: S3×C32/C33 → C2 ⊆ Aut C6 | 108 | | C6.4(S3xC3^2) | 324,136 |
C6.5(S3×C32) = C6×C32⋊C6 | φ: S3×C32/C33 → C2 ⊆ Aut C6 | 36 | 6 | C6.5(S3xC3^2) | 324,138 |
C6.6(S3×C32) = C6×C9⋊C6 | φ: S3×C32/C33 → C2 ⊆ Aut C6 | 36 | 6 | C6.6(S3xC3^2) | 324,140 |
C6.7(S3×C32) = C32×C3⋊Dic3 | φ: S3×C32/C33 → C2 ⊆ Aut C6 | 36 | | C6.7(S3xC3^2) | 324,156 |
C6.8(S3×C32) = Dic3×C3×C9 | central extension (φ=1) | 108 | | C6.8(S3xC3^2) | 324,91 |
C6.9(S3×C32) = Dic3×He3 | central extension (φ=1) | 36 | 6 | C6.9(S3xC3^2) | 324,93 |
C6.10(S3×C32) = Dic3×3- 1+2 | central extension (φ=1) | 36 | 6 | C6.10(S3xC3^2) | 324,95 |
C6.11(S3×C32) = S3×C3×C18 | central extension (φ=1) | 108 | | C6.11(S3xC3^2) | 324,137 |
C6.12(S3×C32) = C2×S3×He3 | central extension (φ=1) | 36 | 6 | C6.12(S3xC3^2) | 324,139 |
C6.13(S3×C32) = C2×S3×3- 1+2 | central extension (φ=1) | 36 | 6 | C6.13(S3xC3^2) | 324,141 |
C6.14(S3×C32) = Dic3×C33 | central extension (φ=1) | 108 | | C6.14(S3xC3^2) | 324,155 |